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Reproductive and Developmental Toxicity of
the Components of Gasoline
by Richard G. Skalko

The reproductive, developmental, and postnatal toxicity of 14 select chemicals and mixtures that are
components of gasoline has been reviewed. The majority of experimental analyses have been performed as
either variations of the accepted segment 2 protocol or as traditional teratology studies. Specific deficiencies
in the present database have been identified and are most obvious in the evaluation of reproductive and
postnatal effects. It is recommended that future studies address the continuing need for assessment in
multiple species and over a range ofdosages with specific emphasis on the impact ofroute ofadministration on
the results obtained.

Introduction
In all mammalian species, including the human, the

normal completion of the reproductive process requires
that several interdependent biological processes occur in
sequence and that they occur properly. These events are a)
germ cell production and release in the male parent; b)
germ cell production and release in the female parent; c)
gamete fusion and subsequent fertilization of the second-
ary oocyte; d) implantation of the blastocyst into the
hormonally primed uterus; e) development and growth of
the conceptus through embryogenesis and fetal develop-
ment and maturation, and]) a normal delivery (1-5). The
ultimate success of this sequence requires a precise inter-
action and balance among several hormones, the genet-
ically programmed changes in morphology that occur
during each phase, and the subsequent integration of
several physiological events.

In the context of modern toxicology, each of these
biological processes, which are under genetic and hormo-
nal control, is a potential target for xenobiotics. Of major
and overriding concern in any evaluation of reproductive
and developmental toxicity is the realization that integra-
tion of these events is absolutely dependent on when they
occur in time (6,7). It is an important corollary that any
alteration or deviation from this precise program, at any
stage, has the potential to result in an adverse outcome of
pregnancy. It is of additional significance to recognize that
chemical (xenobiotic) exposure at one time in this
reproductive program can show an effect at a later time.
Thus, exposure of the embryo to a chemical could alter the

Department of Anatomy, James H. Quillen College of Medicine, East
Tennessee State University, Johnson City, TN 37614-0582.

This manuscript was presented at the International Symposium on the
Health Effects of Gasoline held 5-8 November 1991 in Miami, FL.

development of discrete cell populations (target cells) and
result in morphological, biochemical, or physiological
changes occurring after birth (8). These changes may not
only be structural alterations that are commonly referred
to as birth defects, but may also be functional changes
such as the impaired development of specific nerve cells
leading to mental retardation (7-9).

Over the past 25 years, efforts have been made to
incorporate this unique and complex biology into definitive
testing protocols that involve the traditional test animal
species: rats, mice, and rabbits. These protocols have been
designed to encompass all phases of the complete
reproductive sequence, although the specific details of
these tests are known to vary from country to country and
from agency to agency (10-12). However, the specific evolu-
tion ofthese protocols focused on the development of three
distinct and time-dependent tests. As diagrammed in Fig-
ure 1 (13), they are designated as segments of the
reproductive process. In the segment 1 study, male and
female rodents are treated separately over a time span
designed to encompass the time required to complete an
entire spermatogenic cycle (males) or four estrous cycles
(females). Treated animals are then mated, and the
females continue to be treated throughout the periods of
gestation and lactation. The judicious use of this protocol
permits the assessment of a broad spectrum of reproduc-
tive and developmental end points including gonadal func-
tion, embryogenesis, and the growth and viability of
newborn pups.
The segment 2 study involves the exposure of pregnant

females throughout the embryogenesis period of preg-
nancy and, traditionally, has been designated as the
teratology study. Pregnant females are exposed (day 6-
day 15) from the time immediately after the implantation
process through the time when all organ systems can be
recognized. This time period is commonly referred to as
the phase of major organogenesis (14). Although this test
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FIGURE 1. The generalized protocol used for developmental and reproductive toxicity studies in rodents. Each of the segments overlap in time; they
encompass the entire spectrum of reproduction and development. Reprinted with permission (13).

is designed to evaluate the occurrence of birth defects per
se as the outcome of maternal exposure, it also provides
data on fetal viability and fetal weight.
When the segment 3 study is used, the pregnant females

are exposed from late pregnancy (the fetal period of
intrauterine development) through the periods of parturi-
tion and lactation. A judicious use of this testing protocol
allows an investigator to monitor, among other things,
postnatal growth and lactation. This study can also be
extended and modified to permit the evaluation of postna-
tal behavioral effects of exposure (12), a test end point that
can also be attained by modification of the basic segment 1
protocol. It is important to emphasize that each of these
tests overlap in time so that some processes can be evalu-
ated (e.g., lactation) under different test regimens. What is
not indicated in Figure 1 are two important aspects ofeach
of these tests that are absolutely critical for a meaningful
assessment. First, for a complete analysis of the effects
observed, the use of at least two species is required (8) and
at least three doses should be used (12). With respect to
potential human risk resulting from exposure to the same
chemical, it is of equal importance that experimental
design use the route of exposure most likely to occur in
humans. As the companion disciplines of reproductive and
developmental toxicology continue their scientific evolution
and expand their database, it is becoming clear that the
route of administration is of prime importance in deter-
mining the level of a test chemical, or an active metabolite,
that reaches target cell populations in either the gonads
(15) or the maternal-embryo unit (16) at susceptible
periods of development.

In consort with the several reports included in this
symposium, the working group that analyzed the issue of
reproductive and developmental effects of the components
of gasoline in the traditional test animal species relied

primarily on literature citations obtained through Medline
and Toxline. These were coupled with citations obtained
independently, and this communication represents an
appropriate review of the literature that was available
through 1991. No claim is made for exhaustivity because
certain restrictions were placed on the data used, particu-
larly with respect to the use ofpublished abstracts and the
literature -from Eastern and Central Europe that was not
available in translation. Most of this information is avail-
able, however, and has been reviewed in earlier publica-
tions (17-19). In response to the charge given to our
working group, this report represents an analysis of 14
materials found in gasoline or its exhaust or that are
closely related to gasoline. These compounds were gas-
oline itself and related streams (high-flash aromatic
naphtha, high aromatic solvent, rubber solvent, and Stod-
dard solvent) and several additional components and addi-
tives (ethanol, methanol, toluene, benzene, formaldehyde,
xylene, 1,30-butadiene, methyl tertiary butyl ether, and
hexane). At the present time, more than 80% of the
reported data come from studies which either follow the
segment 2 protocol (Fig. 1) or are traditional studies
published in the teratology literature. This condition ofthe
database is a natural consequence of the ongoing evolution
and development of testing protocols in reproductive and
developmental toxicology because assessment for
reproductive (segment 1) and postnatal (segment 3) effects
was given appropriate prominence much later (11). This
paper designates reports that deal with data generated in
a manner analagous to the segment 1 protocol as an
evaluation of the reproductive toxicity of the chemical or
mixture under question. Those reports that analyze the
effects of maternal exposure during pregnancy, whether
similar to the segment 2 protocol of from the literature
using traditional methods of experimental teratology, are
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REPRODUCTIVE AND DEVELOPMENTAL EFFECTS OF GASOLINE

designated as an evaluation of developmental toxicity.
Finally, studies that have used some aspect of either the
segment 1 or segment 3 paradigm are included here as an

analysis of postnatal toxicity. In the ensuing text, an effort
has been made to include the species used, the dosages
used, the route of administration and, when the data
permit, the designation of a dosage as the NOAEL (no-
observed-adverse-effect-level).

Reproductive Toxicity
The only complex stream related to gasoline that has

been tested for reproductive effects is high flash aromatic
naphtha [(20) inhalation study in the rat, 100-150 ppm;

NOAEL 100 ppm]. In this study, the only effect seen was a

decrease in the weight of male pups subsequent to expo-
sure by inhalation. This effect was seen at the two highest
doses used, and the data allowed the establishment of a
NOAEL at 100 ppm. No studies were available to evaluate
either gasoline or its other major components. Most of the
studies that were available for review did not conform to
the criteria described above for a definitive segment 1 type
of analysis, but are included for the sake of completeness.
Exposure ofmale rats to ethanol (21) produced two effects:
decreased levels of serum testosterone and histological
changes in testicular morphology. Exposure of female
mice, on the other hand, was without effect (22). When
male animals of several species were exposed to benzene,
the major effect observed was testicular toxicity (23,24).
These results are summarized in Table 1. Results of stud-
ies using formaldehyde, xylene, 1,3-butadiene, and methyl
tertiary butyl ether are shown in Table 2. Formaldehyde
and o-xylene produced clear testicular toxicity (25-27).
Mixed xylenes, administered by the inhalation route,
affected mating indexes at the high dose (500 ppm), result-
ing in a NOAEL of 250 ppm (28). When male mice were
exposed to 1,3-butadiene, an increase in abnormal sperm
was seen as the definitive toxic effect, with a NOAEL of
200 ppm (29). A comprehensive investigation of methyl
tertiary butyl ether, on the other hand, showed no effects
on a variety of reproductive end points (30).

Developmental Toxicity
The ability of both naturally occurring chemicals and

xenobiotics to interfere with embryonic developmental in
several species and to produce abnormalities has been
documented over the past 170 years (31). Additional obser-
vations have led to the development of a new branch of
embryology which, coincident with the realization that
mammalian embryos were also susceptible to the adverse
effects of chemicals, become known as experimental
teratology (32). With the delineation of the elements of the
thalidomide syndrome in 1962, the discipline took on the
additional status of an applied science and, since that time,
has effectively used the concepts and techniques of phar-
macology, toxicology, biochemistry and physiology to
become an entirely new and meaningful discipline known
as developmental toxicology (6). In this review, emphasis
has been placed on the definition and guidelines that have
been developed by the U.S. Environmental Protection
Agency (33). At the present time, the manifestation of
developmental toxicity after maternal exposure using the
segment 2 protocol (Fig. 1) involves four interdependent
elements: death of the developing organism, structural
abnormalities, altered intrauterine growth, and prenatal
or postnatal functional deficiency.

Gasoline and and related streams have been evaluated
for their potential to produce developmental toxicity using
inhalation exposure as the route of administration (Table
3). Gasoline was not a clear developmental toxicant,
although skeletal variations were observed at the highest
dose used, 1600 ppm (34). Naphtha was without effect in
rats (20,35), but produced fetal mortality in mice, reduced
fetal weight, delayed ossification, and increased the inci-
dence of cleft palate at 1500 ppm (20). High aromatic
solvent was also developmentally toxic at the highest dose
used, producing an increase in intrauterine death (36).
Neither rubber-solvent (37) nor Stoddard solvent (38)
produced any evidence of developmental toxicity.
Of the 14 chemicals and mixtures evaluated in this

review, ethanol is the only one that is a clear and unequivo-
cal developmental toxicant in humans. The intake of eth-

Table 1. Reproductive toxicity: ethanol and benzene.
Chemical Species Sex Doses Route Effect Reference
Ethanol Rat M 6-10% ethanol Liquid diet Yes (21)

Mouse F 15-35% calories Liquid diet No (22)
Benzene Rat M 1-7 mL/kg Gavage Yes (23)

Rat M 80, 88 ppm Inhalation Yes (24)
Guinea pig M 80, 88 ppm Inhalation Yes (24)
Rabbit M 80, 88 ppm Inhalation Yes (24)

Table 2. Reproductive toxicity: formaldehyde, xylene, 1,3-butadiene, and methyl tertiary butyl ether.
Chemical Species Sex Doses Route Effect Reference
Formaldehyde Rat M 8, 16 mg/kg/day IP Yes (25)

Rat M 100, 200 mg/kg Gavage Yes (26)
o-Xylene Rat M 0.5, 1.0 mg/kg IP Yes (27)
Xylene Rat M/F 60, 250, 500 ppm Inhalation Yes (28)
1,3-Butadiene Mouse M 200-5000 ppm Inhalation Yes (29)
Methyl tertiary butyl Rat M/F 290-2860 ppm Inhalation No (30)

ether
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Table 3. Developmental toxicity: gasoline and related streams.
NOAEL, ppm Developmental

Chemical Species Maternal Fetal toxicant Reference
Gasoline Rat 1600 1600 No (34)
High-flash naphtha Rat 400 400 No (20,35)

Mouse 100 100 Yes (20)
High aromatic solvent Rat 100 100 Yes (36)
Rubber solvent Rat 1600 1600 No (37)
Stoddard solvent Rat 400 400 No (38)

anol by the oral route has been shown to result in the birth
of children that display manifestations of fetal alcohol
syndrome (FAS) (9). These observations have led to an
extensive literature on the effects of ethanol in pregnant
animals. In rats, the effects observed are clearly related to
the route of administration used. When exposure was by
inhalation, no adverse effects were seen, and the maternal
NOAEL (for narcosis) was 16,000 ppm, while the fetal
NOAEL was 20,000 ppm (39). If, however, ethanol was
administered by gavage, limb defects were observed at the
doses used (40). No effects were seen if ethanol was
administered in the drinking water (41). Mice have become
the species of choice in efforts to develop animal models of
FAS, and several studies have shown that ethanol is a clear
developmental toxicant in this species (Table 4). Effects are
produced in the form of clear structural malformations,
and these effects are independent of the route of admin-
istration, whether oral (42), IP injection (42-46), or in a
liquid diet (22,47-49). It is only when ethanol is admin-
istered in the drinking water that developmental toxicity is
manifest primarily as reduced fetal weight (41). At the
present time, no inhalation studies have been reported for
this species. When pregnant rats are exposed to methanol
by the inhalation route, however, developmental toxicity is
produced and is manifest as a decrease in fetal body
weight and the occurrence of structural abnormalities at
high doses (39). In this study, the maternal NOAEL was
10,000 ppm, and the fetal NOAEL was 5000 ppm (39).

Toluene, a developmental toxicant in experimental ani-
mals (rats, rabbits, mice), produces its effects indepen-
dently of the route of administration, although inhalation
studies are predominant (50). A NOAEL for maternal and
fetal effects has not been established. Inhalation studies
have shown that benzene is also a developmental toxicant
in rats (51-55) and mice (56) but not in rabbits (54). A
NOAEL has not been established.

Table 4. Developmental toxicity of ethanol in the mouse.
Route of administration Doses Reference
Oral, IP 2.9, 5.8 g/kg (42)
IP 0.05 mg/kg x 2 (43)
IP 0.03 mL/g (44)
IP 0.03 mL/g (45
IP 2.9-5.8 g/kg (46)
Liquid diet 15-35% calories (22)
Liquid diet 5.4 g/kg (47)
Liquid diet 17-30% calories (48)
Liquid diet 25% calories (49)
Drinking water 15% v/v (41)

IP, intraperitoneal

In an inhalation study that was performed for the
National Toxicology Program, butadiene was shown to
have no developmental toxicity with a calculated NOAEL
for maternal effects of 200 ppm (57). For fetal effects, the
NOAEL was 1000 ppm (57). Effects on fetal weight were
reported in an earlier study (58). Butadiene was a clear
developmental toxicant in mice, producing a reduction in
mean fetal weight (59). These studies have been the sub-
ject of a recent, intensive review (60).
The ability of formaldehyde to be a developmental toxi-

cant is directly dependent on both the route of administra-
tion and the dose. When formaldehyde was administered
by gavage, it produced a high level of maternal lethality,
with no statistically significant effects on any measure of
developmental toxicity (61). Formaldehyde had no effect
when applied dermally (62) or in the diet (63). When
inhalation exposure was used, low doses (0-10 ppm) were
without effect (64), although higher doses (0-20 ppm) did
have an effect on mean fetal weight (65). This latter study
provides a maternal NOAEL of 20 ppm and a fetal
NOAEL of 10 ppm.
The ability of xylenes to be developmental toxicants is

also dependent on the route of administration. When
administered by gavage (0-4.8 mL/kg/day), xylenes are
maternally toxic, producing death in the high dose range
along with a spectrum of developmental effects, including
an increase in fetal death, an increase in the incidence of
cleft palate, and a measurable decrease in fetal weight (66).
However, if the xylenes are administered by inhalation
during pregnancy, no effects are seen (55,67), although the
pure isomers are developmentally toxic, producing a reduc-
tion in fetal weight (68).
An analysis of the effects of methyl tertiary butyl ether

after inhalation exposure revealed that it is a developmen-
tal toxicant in the mouse (69,70), with a fetal NOAEL of
1000 ppm. No effects were seen, however, when rats (69) or
rabbits (71) were studied, and the fetal NOAELs are 2500
ppm and 8000 ppm, respectively (the highest doses stud-
ied). A similar trend is seen when hexane is studied for its
potential as a developmental toxicant. Commercial hexane
is effective in mice only at the highest dose used (9000
ppm; 72) but is without effect in rats at the same level of
exposure (73). Pure n-hexane is also without effect (74,75).
Two studies assessed potential dose-resonse charac-

teristics and suggested that one of the most sensitive
measures of developmental toxicity is an observable reduc-
tion in mean fetal weight (76,77). This single developmen-
tal effect has been reported for 10 ofthe 14 gasoline-related
materials that were reviewed (Table 5). The clear preva-
lence of this response, often in the absence of any other
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Table 5. Chemicals that produce reductions in fetal weight.
Chemical Reference
High-flash naphtha (20)
Ethanol (40)
Methanol (39)
Toluene (50)
Benzene (51,54,55)
Formaldehyde (65)
Xylene (68)
1,3-Butadiene (60)
Methyl tertiary butyl ether (70)
Hexane (75)

clear manifestation of developmental toxicity, lends inde-
pendent support to the suggestion that there may be a

relationship between this sensitive parameter of develop-
mental toxicity and the potential ability of a chemical to
produce birth defects at a higher dose level. It also vali-
dates the current requirement that, for a statistically valid
developmental toxicity study, a minimum of three dose
levels is essential to clearly define underlying dose-
response relationships.

Postnatal Toxicity
Of the 14 chemicals and mixtures that were evaluated,

there was sufficient data for analysis for only 6 ofthem for
evidence of postnatal toxicity. A summary of the data
obtained in these studies is contained in Table 6.
The analysis of the reproductive, developmental, and

postnatal effects of high-flash aromatic naphtha was
reported in a complete multigenerational study in which
the basic protocol for the segment 1 study was extended to
include an evaluation of offspring through the F3 genera-
tion with continual inhalation exposure (20). Effects were
seen in all generations, but became progressively severe,
particularly at the high dose (1500 ppm) where, in the F3
group, most of the males and females from the F2 genera-
tion died during the first week of exposure. Behavioral
effects seen in this generation included ataxia and reduced
motor activity.
Most of the other studies designed to examine postnatal

effects used some variation of the segment 3 protocol (Fig.
1) in which only the pregnant dams were exposed. With
ethanol, treatment of pregnant rats by gavage produced

decreased litter weight in both dose groups studied and a
concomitant dose-dependent increase in postnatal mor-
tality in the exposed pups. Impaired motor activity was
also observed (78). When ethanol was administered in a
liquid diet, newborn animals had a low birth weight (79). In
mice, prenatal ethanol exposure is associated with the
occurrence of a high level of unilateral hydronephrosis on

postnatal day 21, an effect not observed on postnatal day
35 (47). In addition, effects on the postnatal weight profile
have also been reported (80).

In a well-designed and comprehensive study, methanol
has been shown to be a clear behavioral teratogen in rats,
an effect seen in the absence of any other manifestation of
perinatal toxicity (81). Toluene was a postnatal toxicant in
rats, producing effects on the weight of exposed pups (8.2)
and on the postnatal development of the hippocampus (83).
No effects were seen in mice (84). When xylene was studied
in a full segment 1 study (28), effects were seen on the
weights of exposed pups, but only at the highest doses
tested. Methyl tertiary butyl ether was without effect (30).

Recommendations
This review was compiled with the objective of present-

ing a comprehensive database on the reproductive and
developmental toxicity of 14 select chemicals and mixtures.
A major deficit in that database is the relatively incomplete
nature of several studies, both with respect to the number
of species that have been studied in the three segment
tests and with respect to dose levels. This is most apparent
in the reproduction (segment 1) and postnatal (segment 3)
studies. Additionally, attention should be paid to the route
of administration in any attempt to standardize, expand
upon, and validate the data reported here. This database
provides a useful starting point, both for further studies
that use the standard protocols and their specific varia-
tions and for future mechanistic studies to delineate those
targets that are affected and that lead to measurable
toxicity.

This manuscript was developed through the interaction of the author
with John A. Moore, Orville E. Paynter, Maureen H. Feuston, Jacqueline
H. Smith, and Elaine Z. Francis. Their thoughtful insights, concerns, and
criticisms were very beneficial and are deeply appreciated. Special
thanks go to Susan Rogers for her critical assistance during all phases of
preparation for this report.

Table 6. Postnatal toxicity of selected chemicals.
Effectsa

Chemical Species Route Sex Doses Behavioral Other Reference
High-flash naphtha Rat Inhalation M/F 100-1500 ppm Yes Yes (20)
Ethanol Rat Gavage F 4,6 g/L Yes Yes (78)

Rat Liquid diet F 50 g/L - Yes (79)
Mouse Liquid diet F 30% calories - Yes (47)
Mouse Liquid diet F 25% calories - Yes (80)

Methanol Rat Drinking water F 2% v/v Yes - (81)
Toluene Rat SC F 1.25 g/kg - Yes (82)

Rat Inhalation F 100, 500 ppm - Yes (83)
Mouse Inhalation F 200, 400 ppm - No (84)

Xylene Rat Inhalation F 60-500 ppm - Yes (28)
Methyl tertiary butyl ether Rat Inhalation F 290-2860 ppm - No (30)
'A dash indicates not evaluated.
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